Hard Transition from a Stationary State to Oscillations for a Linear Differential Equation

S.I. Serdyukova
Laboratory of Information Technologies, JINR

In [1] we show the existence of slowly damping oscillations of the solution of the linear hyperbolic equations

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{4} u}{\partial x^{4}} \tag{1}
\end{equation*}
$$

with the discontinuous initial data

$$
u(x, 0)=\left\{\begin{array}{ll}
0, & x<0, \tag{2}\\
1, & x \geq 0,
\end{array} \quad u_{t}(x, 0)=0\right.
$$

These oscillations are excited for $|x|>t$. In rhe strip between the characteristics $|x|<$ $(1-\delta) t$ the solution is exponentially close to $1 / 2$. This problem arises in the study of wave propagation in periodic stratified media [2], [3].

Fig. 1.
Following to M.V. Fedoryuk [4], we construct an integral representation of the solution of the problem under study:

$$
u=-\frac{1}{4 \pi i} \int_{\Gamma}\left(\exp \left(-i s t \sqrt{1+s^{2}}-i x s\right)+\exp \left(i s t \sqrt{1+s^{2}}-i x s\right)\right) \frac{d s}{s}
$$

The contour Γ goes along the real line, except a neighborhood of zero: the pole is rounded in the upper half plane over an arc σ that is a semicircle of small radius.

In [1] we derive the asymptotics of the solution to problem (1), (2) as $t \rightarrow \infty$ for all x. We prove seven theorems describing the behavior of the solution for various values of x. The theorems are proved using methods of the theory of functions of a complex variable, in particular, the saddle point method [5]. We formulate the principle theorem of [1].

Theorem 2. As $t \rightarrow \infty$, for $x>t^{1+\delta}$,

$$
u(x, t)=1+\frac{\sin \left(\left(x^{2} / 4 t\right)\left(1+O\left(t^{-2 \delta}\right)\right)-\pi / 4\right)}{\sqrt{\pi x^{2} / t}}\left(1+O\left(t^{-1}+(x / t)^{-4}\right)\right)+O(\exp (-x)) .
$$

The following two theorems of [1] prove that as $t \rightarrow \infty, \quad 0<x<t^{1-\delta}$, the solution of the problem differs from $1 / 2$ by an exponentially small value in t. These theoretical results are in good agreement with numerical experiments.

Fig. 1 shows the numerical solutions for $0<x<55$ at $t=10$ and $t=30$. The graph corresponding to $t=10$ increases faster in the neighborhood of $x=0$. In this graph slowly damping oscillations to the right of the characteristic $x-t=0$, for $x>10$, is clearly seen. In the graph corresponding to $t=30$ there is a distinct horizontal segment to the left of the characteristic, for $x<30$. In Fig. 2 slowly damping oscillations of $u(x, 30)$ to the right of the characteristic, for $x>30$, can be clearly seen.

Fig. 2.
Equation (1) was approximated by the second-order accurate explicit difference scheme

$$
\frac{u_{j}^{n+1}-2 u_{j}^{n}+u_{j}^{n-1}}{\tau^{2}}=\frac{u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}}{h^{2}}-\frac{u_{j+2}^{n}-4 u_{j+1}^{n}+6 u_{j}^{n}-4 u_{j-1}^{n}+u_{j-2}^{n}}{h^{4}},
$$

which is stable in L_{2} for $\tau<h^{2} / \sqrt{4+h^{2}}$. In the computations we used $h=0.1$ and $\tau=h^{2} / \sqrt{2\left(4+2 h^{2}\right)}$.

References

[1] S.I.Serdyukova//Dokl.Math.,2007, v.76, pp.554-558.
[2] N.S.Bakhvalov, M.E.Eglit//Dokl.Math.,2000, v.61, pp.1-4.
[3] N.S.Bakhvalov, M.E.Eglit//Dokl.Math.,2002, v.65, pp.301-306.
[4] M.V.Fedoryuk//Mat. Sb.,1963,62(104), pp.397-468.
[5] N.G. de BruijnAsymptotic Methods in Analysis (North-Holland.Amsterdam.1958, Inostrannaya Literatura.Moscow. 1961).

